The Future Is Now— Implications Of 3D Technology For Orthoses
- Nov 27, 2018 -

The future is now— Implications of 3D technology for orthoses

201802281512491858759.jpg


2018 is shaping up as a breakthrough year for 3D printing in orthoses, as the industry moves from promise to reality. Experts agree: Three-dimensional printing will deliver custom clinical products, designed for individual patients at an affordable price.

By Keith Loria

3D printing is still a young technology for orthoses, and has great potential to change the way orthoses are designed and produced, say experts and specialists in the field.

The technology opens the possibility of adding value to the complete digitalization of analysis, design, and manufacture, said Blake Norquist, director of North American sales and business development for RS Print, a Paal-Beringen, Belgium–based company. He noted that combining digitized gait analysis and 3D printing may provide new standards and frameworks for experts based on objective, scientifically proven data.

One of the big game-changing aspects of this digitalization, Norquist noted, is the translation of data from objective analysis into a design that is then manufactured digitally. Expert involvement in the analysis and conversion toward design remains crucial, he said, adding, “[After] that point, the manufacturing becomes completely unbiased and reproducible.”

Gordon Styles, president and CEO of Star Rapid, a manufacturing company of 3D-printed medical applications based in Guangdong Province, People’s Republic of China, explained that 3D printing allows for orthoses manufacturers to respond quickly to requests for custom-made parts needed for rehabilitation. With this technology, he indicated, it is simple to create tailored supports, such as an insole, using high-resolution medical scans of a patient’s foot to determine arch and pressure points. By creating 3D computer-aided design (CAD) models from these scans, highly accurate sizes and shapes are built with very tight tolerances. This helps ensure optimal fit for the patient to support weak joints and limbs.

Moreover, according to Styles, 3D printing is being used to create patient-specific supports and braces, designed to enhance outcomes owing to their ability to create intricate lattice structures that can be used to create lightweight yet strong parts. “This ultimately makes orthoses more comfortable for patients,” he said. “If there is a requirement for a strong and durable brace, metal 3D printing often provides a stronger support than conventional methods.”

Clinical implications of 3D printing of orthotic devices include new possibilities of customization that have not been available with traditional methods.

The evolution

Computer-aided design of foot orthoses emerged in 1989. This method allowed creation of a digitized model of a foot, which would be sent to a laboratory to be milled from a block of plastic. Use of CAD models for orthoses was slow to evolve because equipment cost was high. With the emergence of 3D-printing machines, however, it has become easier to meet growing customer demand for highly customized parts.

Jay Raju, president of Cura BioMed, Inc., Morristown, New Jersey, noted that early 3D manufacturers offered products that did not necessarily provide the same value given by current solutions. The negatives, he added, far outweighed marginal benefits, and there was a wave of launches that never took off. One of the primary challenges, Raju said, has been the use of an entry-level printing technology called fused-deposit molding, which is “good for making prototypes but not great for industrial-level production.” Next-generation 3D printing companies have adopted a new manufacturing process that uses the more advanced selective laser sintering (SLS), which is used in other cutting-edge markets, such as the aerospace industry.

Because SLS technology incurs high fixed and operating costs, Raju added, it is not generally used for manufacturing orthoses. “But by marrying SLS technology with a robust supply chain from scan to design to manufacture to finishing, companies are now creating commercially viable products.”

With this convergence of supply chain and 3D technology, there should be a change in the functional orthotics market. Star Rapid’s Styles shared that, today, 3D CAD models are quite accurate and the cost of plastic 3D printing is relatively low, making this method better than standard methods, such as milling from a plastic block.